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A heuristic discussion is presented regarding quantum field theory as a synthesis of the complementary 
theories of classical mechanics and quantum mechanics. If the states of quantum field theory are partitioned 
in equivalence classes accordingly as their occupation numbers differ in a finite or an infinite number of 
places, it is suggested that we define states to be macroscopically distinguishable if they belong to different 
equivalence classes. It is then proven that there is, in general, no effective procedure for determining whether 
or not two arbitrarily given states of a quantum system having an infinite number of degrees of freedom 
are macroscopically distinguishable. 

I. INTRODUCTION 

TH E R E is a viewpoint prevalent among a wide 
group of physicists that quantum theory provides 

a correct (or more nearly correct) theory of nature, and 
that classical mechanics is merely an approximation ob
tained by going to the limit of vanishing Plank's con
stant, in much the same way that nonrelativistic me
chanics is obtainable as a limit of special relativistic 
mechanics as we take the velocity of light to be arbi
trarily large. There is no question that the dynamical 
laws of classical and quantum theory are strikingly 
parallel, and, in fact, can be understood to be identical 
when expressed in terms of the group theoretic com
mutators of the generators of infinitesimal translations 
and rotations. However, the kinematics of the two 
theories are vastly dissimilar, and it is simply not true 
that in the limit of vanishing Plank's constant a vector 
in a Hilbert space becomes a point in a classical phase 
space. The limiting theory, which one obtains from the 
theory of a single quantum system by allowing Plank's 
constant to vanish, corresponds more nearly to a theory 
of an ensemble of classical systems. I t is in this more 
limited sense which we may understand classical me
chanics as a limit of quantum mechanics. However, the 
relationship between classical and quantum theory is 
even more intricate. For not only is classical theory a 
limit (in the above sense) of quantum theory, it is 
essential for the physical interpretation of the mathe
matical symbols employed in the quantum theory.1 This 
dual role which classical mechanics plays relative to 
quantum mechanics indicates that the relationship be
tween these two theories is of a rather different char
acter than is the relationship between nonrelativistic 
and special relativistic mechanics. 

The viewpoint which is suggested is to regard classical 
mechanics and quantum mechanics as complementary 
theories, each with its own domain of validity and each 
necessary for a full understanding and interpretation 
of the other. The question immediately arises whether 

such a program can be carried out, and, if so, what 
precisely are the domains of validity of the two theories. 
In some intuitive sense, what is required for the specifi
cation of the domains of validity is a criterion for deter
mining or specifying a distance between states with the 
property that states which are "near" to each other can 
be expected to linearly superpose and interfere, while 
for states which are "far apart ," the relative phases are 
meaningless, and, therefore, there would be no possi
bility of observing the characteristic quantum phe
nomenon of interference. In the latter situation, one 
may regard such states as macroscopically distinguish
able and might expect that their relative behavior to be 
governed by the laws of classical mechanics. 

For systems having a large number of degrees of 
freedom, H. Wakita2 has suggested that phase relations 
between states which differ from each other in many 
degrees of freedom should not be meaningful in the 
sense that there should be no observables having matrix 
elements between such states. Such a suggestion would 
be in the nature of an approximate superselection rule 
for the permissible Hermitian operators. While highly 
intuitive, it is not clear whether such a prescription for 
specifying distances between states can be carried out 
in a representation-invariant manner. 

For systems having an infinite number of degrees of 
freedom a much more natural and satisfactory situation 
arises.2 The vector space for quantum field theory is no 
longer separable. If we form equivalence classes of states 
by placing two states in the same equivalence class if 
they differ in at most a finite number of degrees of 
freedom (that is, if one state can be obtained from the 
other by the application of at most a finite number of 
creation and annihilation operators), we then know 
that there are no unitary mappings of equivalence 
classes onto each other,3 and that the relative phases 
between states belong to different equivalence classes 
are meaningless. I t would, therefore, appear natural to 
regard states belonging to different equivalence classes 
as macroscopically distinguishable. Such macroscopi-
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cally distinguishable states would then have the intui
tively desirable property of differing from each other in 
infinitely many degrees of freedom. Our view of quan
tum field theory as it now emerges would appear as a 
synthesis of the complementary theories of classical 
mechanics and quantum mechanics in much the same 
way that quantum mechanics unified the complemen
tary theories of classical waves and classical particles. 
More specifically, it would appear that the domain of 
quantum mechanics is within each equivalence class, 
whereas classical mechanics would be more appropriate 
for the mechanics of the equivalence classes themselves. 

That quantum field theory may contain important 
elements of classical mechanics is also suggested by 
another heuristic approach. It can be shown4 that 
classical mechanics can be written in a form which, 
purely formally, appears to be quantum mechanics. In 
order to obtain the specifically quantum properties of 
discrete spectra it is necessary to impose the additional 
(and not very natural) boundary conditions that the 
state vector be square integrable. Unless this is done, 
the theory remains essentially an odd version of class-
cal mechanics, or, as Schiller prefers to call it, quasi-
classical mechanics. It is, therefore, not unreasonable to 
expect that by focusing our attention on the equivalence 
classes of quantum field theory, the state vectors of al
most all the classes being in fact not normalizeable, we 
can reveal a classical or perhaps quasiclassical aspect 
of the theory. 

II. UNDECIDABILITY 

The foregoing discussion and outline of a program 
will not be pursued further in the present paper. It was 
intended partly to motivate the introduction of the 
suggestive terminology of "macroscopically distinguish
able states," and partly to indicate a possible broad 
epistomological significance to the precise result which 
we shall develop in the present section. For those 
readers who take issue with the discussion in the in
troduction, if they would kindly read "states which be
long to different equivalence classes" whenever I em
ploy the expression "microscopically distinguishable 
states," they will find the remainder of the paper quite 
independent of the introduction. 

Suppose we wish to specify a particular state of a 
quantized field. Mathematically, this could be accom
plished by giving the occupation numbers for each de
gree of freedom in a particular representation. That is, 
we would, in general, have to give an infinite sequence 
of integers since we are considering systems having 
infinitely many degrees of freedom. (For fermions the 
sequences would only consist of zeros and ones, whereas 
for bosons all integers may occur, but this distinction is 
immaterial for our considerations.) Thus, a state may 
be "named" by an infinite sequence of integers, or 

4R. Schiller, Phys. Rev. 125, 1100 (1962). 

equivalently by a function from the integers to the 
integers. Physically, a state can be specified by describ
ing its preparation. That is, in ordinary language one 
must specify in detail the construction and arrangement 
of the apparatus which is to prepare the state. If the 
system under consideration truly has infinitely many 
degrees of freedom, the description of the apparatus 
must be so detailed that it effectively assures us the 
possibility of determining a precise infinite sequence of 
integers. Of course, we cannot "name" an infinite se
quence by writing down all its terms. All that we really 
require is a recursive procedure for determining for ex
ample, the n-\- 1st term in the sequence possibly given 
the first n terms. Thus, a state is effectively "named" 
by giving a recursive function from the integers to the 
integers. The precise statement of the physical prepara
tion of the state should yield in effect a recursive 
procedure for determining the same function. 

Consider, now, the following problem: We are given 
two states of a quantized field, named either by the 
precise specification of their physical preparation, or by 
giving the recursive procedures required to determine 
their sequence of occupation numbers in a given repre
sentation, and we wish to know whether the two states 
are macroscopically distinguishable. That is, we wish to 
know if it is meaningful to expect the two states to 
interfere in a superposition, or if the relative phases of 
the two states are meaningless. Should there exist a 
procedure for enabling one to decide the macroscopic 
distinguishability of two arbitrary states, such a pro
cedure would yield a method for determining of two 
infinite sequences of integers whether they differ in at 
most a finite number of places. Equivalently, such a 
procedure would enable us to decide of a function f(a) 
obtained by forming the difference between two arbi
trary recursive functions from the integers to the in
tegers whether there exists a finite integer n such that 
/(a) = 0 for all a>n. This decision problem is known to 
be recursively unsolvable.5 

III. CONCLUSIONS 

Given two arbitrary quantum states of a physical 
system having an infinite number of degrees of freedom, 
we know either that they are macroscopically dis
tinguishable, or that they are not; for, either they lie 
in the same equivalence class of states or they do not. 
What we have shown is that there is in general no ef
fective procedure for deciding whether they do or not. 
That is, there exists no effect procedure for determining 
whether two arbitrarily given physical states can be 
superposed to show interference effects characteristic of 
quantum systems. (Of course, in individual special cases 
the answer may be evident.) It is not at all clear what 

5 N. Shapiro, Trans. Am. Math. Soc. 82, 281 (1956); cf. M. 
Davis, Computability and Unsolvability (McGraw-Hill Book Com
pany, Inc., New York, 1958), p. 172. 
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effect this result may have on the feasability of effectu
ating the program outlined in the introduction. 

Although it has long been know from the Godel in
completeness theorem6 that any logical system suf
ficiently complicated to contain the integers is either 
incomplete or inconsistent, it is rather curious or sur
prising that the issue of the macroscopic distinguisha-
bility of quantum states should be among the undecide-
able questions. It should be pointed out that this result 
depends critically on the system having an infinite 
number of degrees of freedom. This is evident for two 
separate reasons: (1) The construction of equivalence 

6 K. Godel, Monatsh. Math. Phys. 38, 173 (1931). 

classes, essential for the criterion of macroscopic dis-
tinguishability, made essential use of the existence of an 
infinite number of degrees of freedom; and (2) the proof 
in Ref. 5 of the unsolvability of the decision problem re
quires that the function is defined on an infinite domain, 
for it is evident that for functions defined on a finite 
domain one can in principle "name" them by exhibiting 
all their values. 
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